Cette thèse est consacrée à une classe de groupes, appelés groupes de Kac-Moody, qui généralise de façon naturelle les groupes de Lie semi-simples, ou plus précisément, les groupes algébriques réductifs, dans un contexte infini-dimensionnel. On s'intéresse plus particulièrement au problème d'isomorphismes pour ces groupes, en vue d'obtenir un analogue infini-dimensionnel de la célèbre théorie des homomorphismes 'abstraits' de groupes algébriques simples, due à Armand Borel et Jacques Tits.Le problème d'isomorphismes qu'on étudie s'avère être un cas particulier d'un problème plus général, qui consiste à caractériser les homomorphismes de groupes algébriques vers les groupes de Kac-Moody, dont l'image est bornée. Ce problème peut à son tour s...